Fuzzy-valued linguistic soft set theory and multi-attribute decision-making application
Zhao Aiwu and
Guan Hongjun
Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 2-7
Abstract:
In this work, we propose the theory of fuzzy linguistic soft set (FLSS) to represent the uncertainty and multi-angle of view when decision makers evaluate an object during decision-making. FLSS integrates fuzzy set theory, linguistic variable and soft set theory. It allows decision makers to utilize linguistic variables to evaluate an object and utilize fuzzy values to describe the corresponding grade of their support of their decisions. Meanwhile, because of the flexibility of soft set, decision makers can use more than one pair of fuzzy-linguistic evaluations to express their opinions from multiple perspectives directly, if necessary. Therefore, it is more flexible and practical than traditional fuzzy set or 2-dimension uncertainty linguistic variable. We also develop a generalized weighted aggregation operator for FLSSs to solve corresponding decision-making issues. Finally, we give a numerical example to verify the practicality and effectiveness of the proposed method.
Keywords: Soft set; Fuzzy set; Linguistic variables; Multiple attribute decision making; Generalized weighted aggregation; Fuzzy-valued linguistic soft set (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915002805
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:2-7
DOI: 10.1016/j.chaos.2015.09.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().