A new nonlinear blind source separation method with chaos indicators for decoupling diagnosis of hybrid failures: A marine propulsion gearbox case with a large speed variation
Zhixiong Li and
Z Peng
Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 27-39
Abstract:
The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.
Keywords: Marine propulsion gearbox; Hybrid faults; Fault decoupling; Chaos indicator; Morphological component analysis (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915003021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:27-39
DOI: 10.1016/j.chaos.2015.09.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().