EconPapers    
Economics at your fingertips  
 

Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator

Albert C.J. Luo and Siyuan Xing

Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 405-434

Abstract: In this paper, bifurcation trees of periodic motions in a periodically forced, time-delayed, hardening Duffing oscillator are analytically predicted by a semi-analytical method. Such a semi-analytical method is based on the differential equation discretization of the time-delayed, nonlinear dynamical system. Bifurcation trees for the stable and unstable solutions of periodic motions to chaos in such a time-delayed, Duffing oscillator are achieved analytically. From the finite discrete Fourier series, harmonic frequency-amplitude curves for stable and unstable solutions of period-1 to period-4 motions are developed for a better understanding of quantity levels, singularity and catastrophes of harmonic amplitudes in the frequency domain. From the analytical prediction, numerical results of periodic motions in the time-delayed, hardening Duffing oscillator are completed. Through the numerical illustrations, the complexity and asymmetry of period-1 motions to chaos in nonlinear dynamical systems are strongly dependent on the distributions and quantity levels of harmonic amplitudes. With the quantity level increases of specific harmonic amplitudes, effects of the corresponding harmonics on the periodic motions become strong, and the certain complexity and asymmetry of periodic motion and chaos can be identified through harmonic amplitudes with higher quantity levels.

Keywords: Time-delayed Duffing oscillator; Period-1 motions to chaos; Bifurcation tree; Implicit mapping; Mapping structures; Nonlinear frequency-amplitudes (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916300364
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:405-434

DOI: 10.1016/j.chaos.2016.02.005

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:405-434