EconPapers    
Economics at your fingertips  
 

Symmetries and conservation laws for a sixth-order Boussinesq equation

E. Recio, M.L. Gandarias and M.S. Bruzón

Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 572-577

Abstract: This paper considers a generalization depending on an arbitrary function f(u) of a sixth-order Boussinesq equation which arises in shallow water waves theory. Interestingly, this equation admits a Hamiltonian formulation when written as a system. A classification of point symmetries and conservation laws in terms of the function f(u) is presented for both, the generalized Boussinesq equation and the equivalent Hamiltonian system.

Keywords: Generalized Boussinesq equation; Conservation laws; Symmetries; Potential symmetries (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:572-577

DOI: 10.1016/j.chaos.2016.03.029

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:572-577