Conservation laws and exact solutions of a Generalized Benjamin–Bona–Mahony–Burgers equation
M.S. Bruzón,
T.M. Garrido and
R. de la Rosa
Chaos, Solitons & Fractals, 2016, vol. 89, issue C, 578-583
Abstract:
The concept of nonlinear self-adjointness given by Ibragimov is applied to a Generalized Benjamin–Bona–Mahony–Burgers equation. Then, a nonlinear self-adjoint classification has been achieved. Moreover, some nontrivial conservation laws are constructed by using the multipliers method which does not require the use of a variational principle. Finally, by applying the modified simplest equation method we derive new travelling wave solutions.
Keywords: Partial differential equations; Nonlinear self-adjointness; Multipliers; Conservation laws; Exact solutions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791630114X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:89:y:2016:i:c:p:578-583
DOI: 10.1016/j.chaos.2016.03.034
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().