EconPapers    
Economics at your fingertips  
 

A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities

René Lozi, Vasiliy A. Pogonin and Alexander N. Pchelintsev

Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 108-114

Abstract: In this article the authors describe the method of construction of approximate chaotic solutions of dynamical model equations with quadratic nonlinearities in a general form using a new accurate numerical method. Numerous systems of chaotic dynamical systems of this type are studied in modern literature. The authors find the region of convergence of the method and offer an algorithm of construction and several criteria to check the accuracy of the approximate chaotic solutions.

Keywords: Attractor; Lorenz system; Chen system; Nose–Hoover oscillator; Power series; Region of convergence; Almost periodic function (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301850
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:108-114

DOI: 10.1016/j.chaos.2016.05.010

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:108-114