EconPapers    
Economics at your fingertips  
 

A growth model based on the arithmetic Z-game

Cristian Cobeli, Mihai Prunescu and Alexandru Zaharescu

Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 136-147

Abstract: We present an evolutionary self-governing model based on the numerical atomic rule Z(a,b)=ab/gcd(a,b)2, for a, b positive integers. Starting with a sequence of numbers, the initial generation Gin, a new sequence is obtained by applying the Z-rule to any neighbor terms. Likewise, applying repeatedly the same procedure to the newest generation, an entire matrix TGin is generated. Most often, this matrix, which is the recorder of the whole process, shows a fractal aspect and has intriguing properties. If Gin is the sequence of positive integers, in the associated matrix remarkable are the distinguished geometrical figures called Z-solitons and the sinuous evolution of the size of numbers on the western edge. We observe that TN* is close to the analogue free of Z-solitons matrix generated from an initial generation in which each natural number is replaced by its largest divisor that is a product of distinct primes. We describe the shape and the properties of this new matrix. N. J. A. Sloane raised a few interesting problems regarding the western edge of the matrix TN*. We solve one of them and present arguments for a precise conjecture on another.

Keywords: Absolute differences; Cellular automata; Growth model; Recurrent sequences; Self-similar processes; Dynamic lattice systems; Sandpiles; Ruler sequence; Gros sequence; Discrete solitons; Z-solitons (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301916
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:136-147

DOI: 10.1016/j.chaos.2016.05.016

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:136-147