On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system
Leilei Zhou,
Zengqiang Chen,
Zhonglin Wang and
Jiezhi Wang
Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 148-156
Abstract:
In this paper, a new four-dimensional (4D) smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented and analyzed. The Lyapunov exponent (LE) spectrum, bifurcation diagram and various phase portraits of the system are provided. The stability, Hopf bifurcation and pitchfork bifurcation of equilibrium point are discussed by using the center manifold theorem and bifurcation theory. Numerical simulation results are consistent with the theoretical analysis. Besides, by combining the topological horseshoe theory with a computer-assisted method of Poincaré maps and utilizing the algorithm for finding horseshoes in 3D hyper-chaotic maps, a horseshoe with two-directional expansions in the 4D hyper-chaotic system is successfully found, which rigorously proves the existence of hyper-chaos in theory.
Keywords: Chaos; Hyper-chaos; Hopf bifurcation; Pitchfork bifurcation; Topological horseshoe (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:148-156
DOI: 10.1016/j.chaos.2016.05.017
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().