A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions
Shorog Aljoudi,
Bashir Ahmad,
Juan J. Nieto and
Ahmed Alsaedi
Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 39-46
Abstract:
We study a nonlocal boundary value problem of Hadamard type coupled sequential fractional differential equations supplemented with coupled strip conditions (nonlocal Riemann-Liouville integral boundary conditions). The nonlinearities in the coupled system of equations depend on the unknown functions as well as their lower order fractional derivatives. We apply Leray-Schauder alternative and Banach’s contraction mapping principle to obtain the existence and uniqueness results for the given problem. An illustrative example is also discussed.
Keywords: Hadamard fractional derivative; Coupled system; Strip conditions; Existence; Fixed point (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791630159X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:39-46
DOI: 10.1016/j.chaos.2016.05.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().