EconPapers    
Economics at your fingertips  
 

Fourier transforms on Cantor sets: A study in non-Diophantine arithmetic and calculus

Diederik Aerts (), Marek Czachor and Maciej Kuna

Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 461-468

Abstract: Fractals equipped with intrinsic arithmetic lead to a natural definition of differentiation, integration, and complex structure. Applying the formalism to the problem of a Fourier transform on fractals we show that the resulting transform has all the required basic properties. As an example we discuss a sawtooth signal on the ternary middle-third Cantor set. The formalism works also for fractals that are not self-similar.

Keywords: Fourier transform; Cantor set; Arithmetic (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916302302
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:461-468

DOI: 10.1016/j.chaos.2016.07.008

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-23
Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:461-468