Old wine in fractal bottles I: Orthogonal expansions on self-referential spaces via fractal transformations
Christoph Bandt,
Michael Barnsley,
Markus Hegland and
Andrew Vince
Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 478-489
Abstract:
Our results and examples show how transformations between self-similar sets may be continuous almost everywhere with respect to measures on the sets and may be used to carry well known notions from analysis and functional analysis, for example flows and spectral analysis, from familiar settings to new ones. The focus of this paper is on a number of surprising applications including what we call fractal Fourier analysis, in which the graphs of the basis functions are Cantor sets, discontinuous at a countable dense set of points, yet have good approximation properties. In a sequel, the focus will be on Lebesgue measure-preserving flows whose wave-fronts are fractals. The key idea is to use fractal transformations to provide unitary transformations between Hilbert spaces defined on attractors of iterated function systems.
Keywords: Iterated function systems; Fractal transformations; Orthogonal expansions; Fourier series (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916302296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:478-489
DOI: 10.1016/j.chaos.2016.07.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().