EconPapers    
Economics at your fingertips  
 

Complex dynamics and bifurcation analysis of host–parasitoid models with impulsive control strategy

Jin Yang, Sanyi Tang and Yuanshun Tan

Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 522-532

Abstract: In this paper, we propose and analyse two type host–parasitoid models with integrated pest management (IPM) interventions as impulsive control strategies. For fixed pulsed model, the threshold condition for the global stability of the host-eradication periodic solution is provided, and the effects of key parameters including the impulsive period, proportionate killing rate, instantaneous search rate, releasing constant, survival rate and the proportionate release rate on the threshold condition are discussed. Then latin hypercube sampling /partial rank correlation coefficients are used to carry out sensitivity analyses to determine the significance of each parameters. Further, bifurcation analyses are presented and the results show that coexistence of attractors existed for a wide range of parameters, and the switch-like transitions among these attractors indicate that varying dosages and frequencies of insecticide applications and numbers of parasitoid released are crucial for IPM strategy. For unfixed pulsed model, the results show that this model exists very complex dynamics and the host population can be controlled below ET, and it implies that the modelling methods are helpful for improving optimal strategies to design appropriate IPM.

Keywords: Host-parasitoid model; Impulsive control strategy; Periodic solution; Coexistence; Bifurcation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916302284
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:522-532

DOI: 10.1016/j.chaos.2016.07.006

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:522-532