Bifurcations and chaos of the nonlinear viscoelastic plates subjected to subsonic flow and external loads
Fengxian An and
Fangqi Chen
Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 78-85
Abstract:
The subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to subsonic flow and external loads are studied by means of Melnikov method. The critical conditions for the occurrence of chaotic motions are obtained. The chaotic features on the system parameters are discussed in detail. The conditions for subharmonic bifurcations are also obtained. For the system with no structural damping, chaotic motions can occur through infinite subharmonic bifurcations of odd orders. Furthermore, we confirm our theoretical predictions by numerical simulations. The theoretical results obtained here can help us to eliminate or suppress large nonlinear vibrations and chaotic motions of the nonlinear viscoelastic plates. Based on Melnikov method, complex dynamical behaviors of the nonlinear viscoelastic plates can be controlled by modifying the system parameters.
Keywords: Nonlinear viscoelastic plate; Subharmonic bifurcation; Chaos; Melnikov method (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:78-85
DOI: 10.1016/j.chaos.2016.05.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().