A memristive chaotic system with heart-shaped attractors and its implementation
Jiening Wu,
Lidan Wang,
Guanrong Chen and
Shukai Duan
Chaos, Solitons & Fractals, 2016, vol. 92, issue C, 20-29
Abstract:
As a controllable nonlinear element, memristor is easy to produce the chaotic signal. Most of the current researchers focus on the nonlinear characteristics of the memristor, however, its ability to control and adjust chaotic systems is often neglected. Therefore, a memristive chaotic system is introduced to generate a kind of heart-shaped attractors in this paper. To further understand the complex dynamics of the system, several basic dynamical behavior of the new chaotic system, such as dissipation and the stability of the equilibrium point is investigated. Some basic properties such as Poincaré-map, Lyapunov index and bifurcation diagram are presented, either analytically or numerically. In addition, the influence of parameters on the system's dynamic behavior is analyzed. Finally, an analog implementation based on PSPICE simulation is also designed. The obtained results clearly show this chaotic system has rich nonlinear characteristics. Some interesting conclusions can be drawn that memristors bring the following effects on chaotic systems: (a) when the polarity of the memristor is changed, a mirror image of the chaotic attractors will appeared in the system; (b) along with the proper choose of the memristor parameters, the chaotic motion of system will be suppressed and enhanced, which makes the system can be applied to the practice on either generating chaos signal or suppressing chaotic interference.
Keywords: Memristor; Chaotic system; Lyapunov exponent; Dynamic analysis; Circuitry implementation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916302648
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:92:y:2016:i:c:p:20-29
DOI: 10.1016/j.chaos.2016.09.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().