EconPapers    
Economics at your fingertips  
 

Spectrum reconstruction of quasi-zero stiffness floating raft systems

Yingli Li and Daolin Xu

Chaos, Solitons & Fractals, 2016, vol. 93, issue C, 123-129

Abstract: Chaos control can be utilized to reform the response spectra of a dynamic system, potentially useful for the acoustic reconstruction of underwater vehicles. Introduction of the quasi-zero stiffness (QZS) isolators into the chaotification system can greatly reduce the emission of vibration signals from vehicles. In this study, the QZS isolators is adopted with combination of chaotification expecting to achieve excellent performances in both vibration isolation and the camouflage of vibration signal features. A nonlinear time delay control scheme is proposed to chaotify the QZS system in order to reconstruct the output spectrum features of the acoustic noise induced by the machinery vibration. A high dimensional nonlinear model of the QZS system is developed to understand the spectrum characteristics of the system. From the spectrum patterns, a specific performance index is formulated to evaluate the significance of signal-noise ratio. Based on this index, the Generic Algorithm method is employed to seek the optimal control parameters which enable to eliminate the feature of line spikes emerged from broad-band spectra. The results show that the unique combination of QZS system and time delay control can effectively reform the power spectra, especially for the case with relatively high frequency.

Keywords: Spectrum reconstruction; Time-delayed feedback control; Chaotification; Quasi-zero stiffness isolators; Optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303058
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:93:y:2016:i:c:p:123-129

DOI: 10.1016/j.chaos.2016.10.009

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:123-129