EconPapers    
Economics at your fingertips  
 

Competing spreading processes and immunization in multiplex networks

Bo Gao, Zhenghong Deng and Dawei Zhao

Chaos, Solitons & Fractals, 2016, vol. 93, issue C, 175-181

Abstract: Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We find that strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

Keywords: Competing spreading; Immunization; Multiplex network; Threshold; Outbreak size (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:93:y:2016:i:c:p:175-181

DOI: 10.1016/j.chaos.2016.10.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:175-181