Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images
Anastasiya E. Runnova,
Alexander E. Hramov,
Vadim V. Grubov,
Alexey A. Koronovskii,
Maria K. Kurovskaya and
Alexander N. Pisarchik
Chaos, Solitons & Fractals, 2016, vol. 93, issue C, 201-206
Abstract:
We propose a theoretical approach associated with an experimental technique to quantitatively characterize cognitive brain activity in the perception of ambiguous images. Based on the developed theoretical background and the obtained experimental data, we introduce the concept of effective noise intensity characterizing cognitive brain activity and propose the experimental technique for its measurement. The developed theory, using the methods of statistical physics, provides a solid experimentally approved basis for further understanding of brain functionality. The rather simple way to measure the proposed quantitative characteristic of the brain activity related to the interpretation of ambiguous images will hopefully become a powerful tool for physicists, physiologists and medics. Our theoretical and experimental findings are in excellent agreement with each other.
Keywords: Brain; Noise; Ambiguous image; Multistability (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303241
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:93:y:2016:i:c:p:201-206
DOI: 10.1016/j.chaos.2016.11.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().