Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback
Shao-Fang Wen,
Yong-Jun Shen,
Shao-Pu Yang and
Jun Wang
Chaos, Solitons & Fractals, 2017, vol. 94, issue C, 54-62
Abstract:
In this paper, the dynamical response of Mathieu–Duffing oscillator under fractional-order delayed feedback is investigated. At first, the approximate analytical solution and the amplitude-frequency equation are obtained based on the averaging method. The equivalent stiffness coefficient and equivalent damping coefficient are defined by the feedback coefficient, fractional order and time delay et al. The effects of feedback coefficient, fractional order and time delay on these two equivalent parameters are analyzed. It is found that the fractional-order delayed feedback has not only the function of delayed velocity feedback, but also the function of delayed displacement feedback. Then, the comparison of the amplitude-frequency curves obtained by the analytical and numerical solutions verifies the correctness and satisfactory precision of the approximate analytical solution. The effects of the parameters in the fractional-order delayed feedback on the complex dynamical behaviors of Mathieu–Duffing oscillator are studied. It could be found that fractional-order delayed feedback has important influences on the dynamical behavior of Mathieu–Duffing oscillator, and the results are very helpful to design, analyze or control in vibration engineering.
Keywords: Fractional-order derivative; Mathieu–Duffing oscillator; Time delay; Averaging method (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303356
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:94:y:2017:i:c:p:54-62
DOI: 10.1016/j.chaos.2016.11.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().