Seasonality and the logistic map
Emily Silva and
Enrique Peacock-Lopez
Chaos, Solitons & Fractals, 2017, vol. 95, issue C, 152-156
Abstract:
Nonlinear difference equations, such as the logistic map, have been used to study chaos and also to model population dynamics. Here we propose a model that extends the “lose + lose = win” behavior found in Parrondo’s Paradox, where switching between chaotic parameters in the logistic map yields periodic behavior (“chaos + chaos = order”). The model uses twelve parameters each reflecting the conditions of one of the twelve months. In this paper we study the effects of smooth-transitioning parameters and the robust system that emerges.
Keywords: Seasonality; Logisic map; Switching strategies; Parrondo paradox (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:95:y:2017:i:c:p:152-156
DOI: 10.1016/j.chaos.2016.12.015
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().