EconPapers    
Economics at your fingertips  
 

Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel

J.F. Gómez-Aguilar

Chaos, Solitons & Fractals, 2017, vol. 95, issue C, 179-186

Abstract: Recently, Abdon Atangana and Dumitru Baleanu suggested a novel fractional operator based in the Mittag-Leffler function with non-singular and nonlocal kernel. In this paper using the newly established fractional operator, an alternative representation of the Irving–Mullineux oscillator via Atangana–Baleanu fractional derivative in Liouville–Caputo sense is presented. Numerical simulations are obtained using an iterative scheme via Sumudu-Picard iterative method. The existence and uniqueness of the solutions are studied in detail using the fixed-point theorem and some properties of the inner product and the Hilbert space. Numerical simulations of the special solutions were done and new chaotic behaviors are obtained.

Keywords: Irving–Mullineux oscillator; Atangana–Baleanu fractional operators; Sumudu transform; Sumudu-Picard iterative method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303848
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:95:y:2017:i:c:p:179-186

DOI: 10.1016/j.chaos.2016.12.025

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:95:y:2017:i:c:p:179-186