Nonlinear coupled mode excitations in microtubules
Conrad Bertrand Tabi,
Eric Tankou and
Alidou Mohamadou
Chaos, Solitons & Fractals, 2017, vol. 95, issue C, 187-194
Abstract:
The dynamics of coupled nonlinear waves is addressed in the framework of the angular model of microtubules. The semi-discrete approximation is used to write the dynamics of the lower and upper cutoff modes in the form of coupled nonlinear Schrödinger equations. The linear stability analysis of modulational instability is used to confirm the existence of soliton solutions, and the growth-rate of instability is shown to be importantly influenced by the dipolar energy. Single mode solutions are found as breathers and resonant kink, while the coupled mode introduces a kink envelope solution, whose characteristics are discussed with respect to the dipolar energy. The found solution is shown to be robust, which is important for energy transport in the Polymerization/depolymerization mechanism of protofilaments.
Keywords: Microtubules; Solitons; Energy transport (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:95:y:2017:i:c:p:187-194
DOI: 10.1016/j.chaos.2016.12.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().