A multiscale extension of the Margrabe formula under stochastic volatility
Jeong-Hoon Kim and
Chang-Rae Park
Chaos, Solitons & Fractals, 2017, vol. 97, issue C, 59-65
Abstract:
The pricing of financial derivatives based on stochastic volatility models has been a popular subject in computational finance. Although exact or approximate closed form formulas of the prices of many options under stochastic volatility have been obtained so that the option prices can be easily computed, such formulas for exchange options leave much to be desired. In this paper, we consider two different risky assets with two different scales of mean-reversion rate of volatility and use asymptotic analysis to extend the classical Margrabe formula, which corresponds to a geometric Brownian motion model, and obtain a pricing formula under a stochastic volatility. The resultant formula can be computed easily, simply by taking derivatives of the Margrabe price itself. Based on the formula, we show how the stochastic volatility corrects the Margrabe price behavior depending on the moneyness and the correlation coefficient between the two asset prices.
Keywords: Margrabe’s formula; Exchange option; Stochastic volatility; Multiscale; Greeks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917300474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:97:y:2017:i:c:p:59-65
DOI: 10.1016/j.chaos.2017.02.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().