EconPapers    
Economics at your fingertips  
 

On topological properties of sierpinski networks

Muhammad Imran, Sabeel-e-Hafi,, Wei Gao and Mohammad Reza Farahani

Chaos, Solitons & Fractals, 2017, vol. 98, issue C, 199-204

Abstract: Sierpinski graphs constitute an extensively studied class of graphs of fractal nature applicable in topology, mathematics of Tower of Hanoi, computer science, and elsewhere. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, biological activity, etc. are determined by the chemical applications of graph theory. These properties can be characterized by certain graph invariants referred to as topological indices. In QRAR/QSPR study these graph invariants has played a vital role. In this paper, we study the molecular topological properties of Sierpinski networks and derive the analytical closed formulas for the atom-bond connectivity (ABC) index, geometric-arithmetic (GA) index, and fourth and fifth version of these topological indices for Sierpinski networks denoted by S(n, k).

Keywords: Atom-bond connectivity index; Geometric-arithmetic index; Sierpinski network (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917300954
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:98:y:2017:i:c:p:199-204

DOI: 10.1016/j.chaos.2017.03.036

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:98:y:2017:i:c:p:199-204