An analytical criterion for jump phenomena in fractional Duffing oscillators
Q.X. Liu,
J.K. Liu and
Y.M. Chen
Chaos, Solitons & Fractals, 2017, vol. 98, issue C, 216-219
Abstract:
This paper presents an analytical study on a general kind of fractional Duffing oscillators subjected to harmonic excitations. The Caputo-type fractional derivatives are transformed into improper double integrals by employing a memory-free principle. The integrals and the cubic stiffness are further handled by equivalent linearization. An equivalent linear equation is then deduced, based on which amplitude–frequency responses can be obtained analytically. According to the attained amplitude–frequency curve, we present an analytical criterion for jump phenomena of the oscillating amplitude due to varying excitation frequency. The analytical results are validated by numerical examples.
Keywords: Fractional Duffing oscillator; Equivalent linearization; Amplitude–frequency response; Jump phenomenon (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917300899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:98:y:2017:i:c:p:216-219
DOI: 10.1016/j.chaos.2017.03.030
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().