Globally asymptotically stable analysis in a discrete time eco-epidemiological system
Zengyun Hu,
Zhidong Teng,
Tailei Zhang,
Qiming Zhou and
Xi Chen
Chaos, Solitons & Fractals, 2017, vol. 99, issue C, 20-31
Abstract:
In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.
Keywords: Discrete eco-epidemiological system; Predator-prey; Globally asymptotically stable; Flip bifurcation; Hopf bifurcation; Chaos (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301017
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:99:y:2017:i:c:p:20-31
DOI: 10.1016/j.chaos.2017.03.042
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().