EconPapers    
Economics at your fingertips  
 

Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment

Jinhui Li, Zhidong Teng, Guangqing Wang, Long Zhang and Cheng Hu

Chaos, Solitons & Fractals, 2017, vol. 99, issue C, 63-71

Abstract: In this paper, we introduce the saturated treatment and logistic growth rate into an SIR epidemic model with bilinear incidence. The treatment function is assumed to be a continuously differential function which describes the effect of delayed treatment when the medical condition is limited and the number of infected individuals is large enough. Sufficient conditions for the existence and local stability of the disease-free and positive equilibria are established. And the existence of the stable limit cycles also is obtained. Moreover, by using the theory of bifurcations, it is shown that the model exhibits backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcations. Finally, the numerical examples are given to illustrate the theoretical results and obtain some additional interesting phenomena, involving double stable periodic solutions and stable limit cycles.

Keywords: SIR epidemic model; Logistic growth; Saturated treatment; Equilibrium; Stability; Bifurcation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301078
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:99:y:2017:i:c:p:63-71

DOI: 10.1016/j.chaos.2017.03.047

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:63-71