EconPapers    
Economics at your fingertips  
 

Fractality in coffee bean surface for roasting process

Mauricio Gabriel-Guzmán, Victor M. Rivera, Yolanda Cocotle-Ronzón, Samuel García-Díaz and Eliseo Hernandez-Martinez

Chaos, Solitons & Fractals, 2017, vol. 99, issue C, 79-84

Abstract: The roasting is the stage where the coffee bean undergoes physiochemical changes that provide their typical sensory characteristics (i.e., aroma and flavor). Despite the importance, the roasting process is performed based on the operator experience, which makes difficult the homogenization between batches of roasted coffee. In that sense, this paper proposes a methodology to analyze changes in the coffee bean during roasting; this can be used as an indicator of the roasting degree. The proposal is based on R/S fractal analysis of coffee bean surface images taken during the roasting process. The results indicate that the Hurst exponent exhibits dynamic changes that can be correlated with the physical changes of the coffee bean, such as fractures and color changes, suggesting that the fractal index could be used for indirect monitoring of the roasting degree.

Keywords: Roasting process; Coffee bean; R/S analysis; Indirect monitoring (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917301170
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:99:y:2017:i:c:p:79-84

DOI: 10.1016/j.chaos.2017.03.056

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:79-84