EconPapers    
Economics at your fingertips  
 

Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density

Tucker McElroy () and Agnieszka Jach

Computational Statistics & Data Analysis, 2023, vol. 177, issue C

Abstract: A nonparametric procedure for identifying the differencing operator of a non-stationary time series is presented and tested. Any proposed differencing operator is first applied to the time series, and the spectral density is tested for zeroes corresponding to the polynomial roots of the operator. A nonparametric tapered spectral density estimator is used, and the subsampling methodology is applied to obtain critical values. Simulations explore the effectiveness of the procedure under a variety of scenarios involving non-stationary processes.

Keywords: Seasonality; Subsampling; Unit roots (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001608
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:177:y:2023:i:c:s0167947322001608

DOI: 10.1016/j.csda.2022.107580

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:177:y:2023:i:c:s0167947322001608