Least squares type estimation for Cox regression model and specification error
P.L. Gradowska and
Roger Cooke
Computational Statistics & Data Analysis, 2012, vol. 56, issue 7, 2288-2302
Abstract:
A new estimation procedure for the Cox proportional hazards model is introduced. The method proposed employs the sample covariance matrix of model covariates and alternates between estimating the baseline cumulative hazard function and estimating model coefficients. It is shown that the estimating equation for model parameters resembles the least squares estimate in a linear regression model, where the outcome variable is the transformed event time. As a result an explicit expression for the difference in the parameter estimates between nested models can be derived. Nesting occurs when the covariates of one model are a subset of the covariates of the other. The new method applies mainly to the uncensored data, but its extension to the right censored observations is also proposed.
Keywords: Cox regression; Estimation; Model specification; Simulation; Specification error (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000084
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:7:p:2288-2302
DOI: 10.1016/j.csda.2012.01.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().