EconPapers    
Economics at your fingertips  
 

Logistic regression with outcome and covariates missing separately or simultaneously

Shu-Hui Hsieh, Chin-Shang Li and Shen-Ming Lee ()

Computational Statistics & Data Analysis, 2013, vol. 66, issue C, 32-54

Abstract: Estimation methods are proposed for fitting logistic regression in which outcome and covariate variables are missing separately or simultaneously. One of the two proposed estimators is an extension of the validation likelihood estimator of Breslow and Cain (1988). The other is a joint conditional likelihood estimator that uses both validation and non-validation data. Large sample properties of the proposed estimators are studied under certain regularity conditions. Simulation results show that the joint conditional likelihood estimator is more efficient than the validation likelihood estimator, weighted estimator, and complete-case estimator. The practical use of the proposed methods is illustrated with data from a cable TV survey study in Taiwan.

Keywords: Outcome missing; Covariate missing; Validation likelihood; Joint conditional likelihood (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001059
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:66:y:2013:i:c:p:32-54

DOI: 10.1016/j.csda.2013.03.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:66:y:2013:i:c:p:32-54