Non-parametric entropy estimators based on simple linear regression
Hideitsu Hino,
Kensuke Koshijima and
Noboru Murata
Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 72-84
Abstract:
Estimators for differential entropy are proposed. The estimators are based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Simple linear regression is utilized to estimate the values of density function and its second derivative at a point. After estimating the values of the probability density function at each of the given sample points, by taking the empirical average of the negative logarithm of the density estimates, two entropy estimators are derived. Other entropy estimators which directly estimate entropy by linear regression, are also proposed. The proposed four estimators are shown to perform well through numerical experiments for various probability distributions.
Keywords: Entropy estimation; Non-parametric; Simple linear regression (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000791
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:72-84
DOI: 10.1016/j.csda.2015.03.011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().