EconPapers    
Economics at your fingertips  
 

Estimating semi-parametric output distance functions with neural-based reduced form equations using LIML

Angelos Vouldis, Panayotis Michaelides and Mike Tsionas

Economic Modelling, 2010, vol. 27, issue 3, 697-704

Abstract: Efficiency analysis is an important tool for evaluating firms' performance. This paper introduces a novel approach for measuring technical efficiency (TE) in the case of technologies with multiple outputs which deals with the endogeneity of outputs issue. The proposed approach uses Artificial Neural Networks (ANNs) and the method of Limited Information Maximum Likelihood (LIML). The validity of the proposed approach is illustrated by fitting it to a large US data set for all commercial banks in the 1989-2000 time span. Meanwhile, we compare the proposed approach to the single-equation Translog output distance function and the proposed approach was found to yield very satisfactory results, while dealing with the issue of the endogeneity of outputs.

Keywords: Output; distance; function; Translog; Technical; efficiency; ANN; LIML (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264-9993(10)00010-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:27:y:2010:i:3:p:697-704

Access Statistics for this article

Economic Modelling is currently edited by S. Hall and P. Pauly

More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ecmode:v:27:y:2010:i:3:p:697-704