Bivariate income distributions for assessing inequality and poverty under dependent samples
Andrea Vinh,
William Griffiths () and
Duangkamon Chotikapanich
Economic Modelling, 2010, vol. 27, issue 6, 1473-1483
Abstract:
As indicators of social welfare, the incidence of inequality and poverty is of ongoing concern to policy makers and researchers alike. Of particular interest are the changes in inequality and poverty over time, which are typically assessed through the estimation of income distributions. From this, income inequality and poverty measures, along with their differences and standard errors, can be derived and compared. With panel data becoming more frequently used to make such comparisons, traditional methods which treat income distributions from different years independently and estimate them on a univariate basis, fail to capture the dependence inherent in a sample taken from a panel study. Consequently, parameter estimates are likely to be less efficient, and the standard errors for between-year differences in various inequality and poverty measures will be incorrect. This paper addresses the issue of sample dependence by suggesting a number of bivariate distributions, with Singh-Maddala or Dagum marginals, for a partially dependent sample of household income for two years. Specifically, the distributions considered are the bivariate Singh-Maddala distribution, proposed by Takahasi (1965), and bivariate distributions belonging to the copula class of multivariate distributions, which are an increasingly popular approach to modelling joint distributions. Each bivariate income distribution is estimated via full information maximum likelihood using data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey for 2001 and 2005. Parameter estimates for each bivariate income distribution are used to obtain values for mean income and modal income, the Gini inequality coefficient and the headcount ratio poverty measure, along with their differences, enabling the assessment of changes in such measures over time. In addition, the standard errors of each summary measure and their differences, which are of particular interest in this analysis, are calculated using the delta method.
Keywords: C23; C46; Copulas; Income; distributions; Inequality; Panel; data; Dependent; sample (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264-9993(10)00141-0
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Bivariate Income Distributions for AssessingInequality and Poverty Under Dependent Samples (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:27:y:2010:i:6:p:1473-1483
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().