On ridge estimators for the negative binomial regression model
Kristofer Månsson ()
Economic Modelling, 2012, vol. 29, issue 2, 178-184
Abstract:
The negative binomial (NB) regression model is very popular in applied research when analyzing count data. The commonly used maximum likelihood (ML) estimator is very sensitive to highly intercorrelated explanatory variables. Therefore, a NB ridge regression estimator (NBRR) is proposed as a robust option of estimating the parameters of the NB model in the presence of multicollinearity. To investigate the performance of the NBRR and the traditional ML approach the mean squared error (MSE) is calculated using Monte Carlo simulations. The simulated result indicated that some of the proposed NBRR methods should always be preferred to the ML method.
Keywords: Negative binomial regression; Maximum likelihood; Ridge regression; MSE; Monte Carlo simulations; Multicollinearity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999311002276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:29:y:2012:i:2:p:178-184
DOI: 10.1016/j.econmod.2011.09.009
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().