Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models
Soo Y. Kim and
Arun Upneja
Economic Modelling, 2014, vol. 36, issue C, 354-362
Abstract:
The restaurant industry has been facing tough challenges because of the recent economic turmoil. Although different industries face different levels of competition and therefore the likelihood of financial distress can differ for firms in different industries, scant attention has been paid to predicting restaurant financial distress. The primary objective of this paper is to examine the key financial distress factors for publicly traded U.S. restaurants for the period from 1988 to 2010 using decision trees (DT) and AdaBoosted decision trees. The AdaBoosted DT model for the entire dataset revealed that financially distressed restaurants relied more heavily on debt; and showed lower rates of increase of assets, lower net profit margins, and lower current ratios than non-distressed restaurants. A larger proportion of debt in the capital structure ruined restaurants' financial structure and the inability to pay their drastically increased debt exposed restaurants to financial distress. Additionally, a lack of capital efficiency increased the possibility of financial distress. We recommend the use of the AdaBoosted DT model as an early warning system for restaurant distress prediction because the AdaBoosted DT model demonstrated the best prediction performance with the smallest error in overall and type I error rates. The results of two subset models for full-service and limited-service restaurants indicated that the segments had slightly different financial risk factors.
Keywords: Financial distress prediction; Decision tree; AdaBoosted decision tree; Prediction accuracy; U.S. restaurant firms (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999313004318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:36:y:2014:i:c:p:354-362
DOI: 10.1016/j.econmod.2013.10.005
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().