An ensemble-based model for two-class imbalanced financial problem
Jui-Jung Liao,
Ching-Hui Shih,
Tai-Feng Chen and
Ming-Fu Hsu
Economic Modelling, 2014, vol. 37, issue C, 175-183
Abstract:
This study proposes an ensemble-based model (EBM) for the two-class imbalanced classification problem by joining together the support vector machine (SVM), multiple feature selection combination, back-propagation neural network (BPNN) ensemble, and rough set theory (RST). To improve the significance of the rare and specific region belonging to the minority class in the decision region, we take the SVM as a pre-processor to balance the training dataset and use multiple feature selection combination grounded on ensemble learning in order to determine the most representative features from the re-sized dataset. The representative features are then fed into the BPNN ensemble to construct an effective financial pre-warning mechanism. Lacking comprehensibility and readability is one of the fatal weaknesses of an ensemble classifier and it impedes its real-life application. Thus, the study executes RST to extract knowledge from the BPNN ensemble for decision makers to make suitable judgments. Decision makers can take the decision rules as a roadmap to modify a firm's capital structure so as to survive in an extremely turbulent financial market. Empirical results reveal that the introduced EBM's prediction accuracy is very promising in financial risk mining, relative to other detection approaches in this study.
Keywords: Artificial neural network; Ensemble learning; Imbalance class; Knowledge extraction; Decision making (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999313004963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:37:y:2014:i:c:p:175-183
DOI: 10.1016/j.econmod.2013.11.013
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().