A comparison of the accuracy of asymptotic approximations in the dynamic regression model using Kullback-Leibler information
Ranjani Atukorala and
Sivagowry Sriananthakumar
Economic Modelling, 2015, vol. 45, issue C, 169-174
Abstract:
In order to better understand the economy and conduct policy analysis, both econometricians and decision makers are interested in effective inferences using econometric models. Because of the complexity of economic data, econometricians heavily rely on asymptotic theory when making statistical inferences. However, the use of asymptotic approximations to the distributions of test statistics and estimators is not always successful. This paper illustrates the use of the Kullback-Leibler information (KLI) measure to assess the relative quality of two asymptotic approximations to an unknown distribution from which we can obtain simple random drawings. The illustration involves comparing the large-sample and small-disturbance asymptotic distributions under the null hypothesis of a t statistic from the dynamic linear regression model. We find convincing evidence in favour of the use of p values and critical values from the small-disturbance Student's t distribution, rather than from the large-sample standard normal distribution, in this case. This simple KLI measure has considerable potential. For example, it can guide us to conditions under which asymptotic approximations are reasonable and to circumstances when it may be inappropriate to rely totally on asymptotic approximations.
Keywords: Kullback-Leibler information; Small disturbance asymptotic distribution; Large sample asymptotic distribution (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999314004611
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:45:y:2015:i:c:p:169-174
DOI: 10.1016/j.econmod.2014.11.021
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().