Identification and estimation of endogenous selection models in the presence of misclassification errors
Ji-Liang Shiu
Economic Modelling, 2016, vol. 52, issue PB, 507-518
Abstract:
This paper shows the semi-parametric identification and estimation of sample selection models when the primary equation contains a discrete mismeasured endogenous covariate. Assuming that appropriate instruments for the presence of endogeneity are available, I apply a control function approach to remove the possible endogeneity. Based on the conditional mean independence between the model error and the selection error, the model can be regarded as a semi-parametric regression model with a discrete mismeasured covariate, thereby permitting a non-classical measurement error. Additional identification assumptions include monotonicity restrictions on the regression function and an empirical testable rank condition. I then use the identification result to construct a sieve maximum likelihood estimation estimator to estimate the model parameters consistently and recover the selection rule and joint probabilities of the accurately measured endogenous variable and the mismeasured observed variable. The proposed estimation method allows for a rather flexible functional form of the mismeasured endogenous covariate, requires only one valid instrument to control for both endogeneity and measurement errors for the variable of interest, and imposes no distribution assumptions on the selection rule.
Keywords: Sample selection; Endogeneity; Non-classical measurement errors; Instrumental variables; Semi-parametric identification (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999315002783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:52:y:2016:i:pb:p:507-518
DOI: 10.1016/j.econmod.2015.09.031
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().