Economics at your fingertips  

Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth

Qifa Xu, Xingxuan Zhuo, Cuixia Jiang, Xi Liu and Yezheng Liu

Economic Modelling, 2018, vol. 75, issue C, 221-236

Abstract: To identify important variables at block level in high dimensional mixed frequency data analysis, we introduce a specific type of group penalized function into the U-MIDAS regression framework, and propose a novel group penalized unrestricted MIDAS (GP-U-MIDAS) model. The GP-U-MIDAS model is able to take into account the grouping structures produced via the frequency alignment operation in U-MIDAS regressions. It performs both group selection and regularization in order to enhance its own interpretability and prediction ability. In Monte Carlo experiments, we find that the GP-U-MIDAS model is significantly superior to the P-U-MIDAS, FC-U-MIDAS and U-MIDAS models in terms of variable selection and prediction accuracy, when either all variables of a group are included or excluded. The superiority of GP-U-MIDAS model is also illustrated in a real-world application on forecasting US quarterly GDP growth. The empirical results show that the GP-U-MIDAS model outperforms the other competitive models, and is able to select crucial indicators, such as industrial production, personal consumption expenditures and so on, for GDP growth forecasts, which are especially useful for policy makers.

Keywords: Mixed frequency data; MIDAS regressions; High dimensionality; Group selection; GP-U-MIDAS; Forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Economic Modelling is currently edited by S. Hall and P. Pauly

More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-12-08
Handle: RePEc:eee:ecmode:v:75:y:2018:i:c:p:221-236