Structural analysis with mixed-frequency data: A model of US capital flows
Emanuele Bacchiocchi,
Andrea Bastianin,
Alessandro Missale and
Eduardo Rossi
Economic Modelling, 2020, vol. 89, issue C, 427-443
Abstract:
We develop a new structural Vector Autoregressive (SVAR) model for analysis with mixed-frequency data. The MIDAS-SVAR model allows to identify structural dynamic links exploiting the information contained in variables sampled at different frequencies. It also provides a general framework to test homogeneous frequency-based representations versus mixed-frequency data models. A set of Monte Carlo experiments suggests that the test performs well both in terms of size and power. The MIDAS-SVAR is then used to study how monetary policy and financial uncertainty impact on the dynamics of gross capital inflows to the US. While no relation is found when using standard quarterly data, mixed frequency analysis exploiting the variability present in the series within the quarter shows that the effect of an interest rate shock is greater the longer the time lag between the month of the shock and the end of the quarter.
Keywords: Mixed frequency variables; Capital flows; Monetary policy; Uncertainty shocks (search for similar items in EconPapers)
JEL-codes: C32 E52 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999319302172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:89:y:2020:i:c:p:427-443
DOI: 10.1016/j.econmod.2019.11.010
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().