Further empirical evidence on the forecasting of volatility with smooth transition exponential smoothing
Min Liu,
James W. Taylor and
Wei-Chong Choo
Economic Modelling, 2020, vol. 93, issue C, 651-659
Abstract:
Smooth transition exponential smoothing (STES) uses a logistic function of a user-specified transition variable as adaptive time varying smoothing parameter. This paper empirically addresses three aspects of the use of STES for volatility forecasting. Previous empirical results showed the method performing well in comparison with fixed parameter exponential smoothing and a variety of GARCH models. However, those results related only to forecasting weekly volatility. In this paper, we address the use of STES for forecasting daily volatility. A second issue that we evaluate is the robustness of STES in the presence of extreme outlying observations. The third aspect that we consider is the use of trading volume within a transition variable in the STES method. Our simulation results suggest that STES performs well in terms of robustness, when compared with standard methods and several alternative robust methods. Analysis using stock return data shows that STES has the potential to outperform standard and robust forms of fixed parameter exponential smoothing and GARCH models. The results suggest the use of the sign and size of past shocks as STES transition variables, and provide no clear support for the incorporation of trading volume in a transition variable.
Keywords: Smooth transition exponential smoothing; Daily volatility forecasting; Robustness; Trading volume (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999319318334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:93:y:2020:i:c:p:651-659
DOI: 10.1016/j.econmod.2020.02.021
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().