Economics at your fingertips  

Mixed-frequency SV model for stock volatility and macroeconomics

Yuhuang Shang and Tingguo Zheng

Economic Modelling, 2021, vol. 95, issue C, 462-472

Abstract: This paper develops a stochastic volatility-mixed frequency data sampling (SV-MIDAS) model with low frequency macro variables and further extends it to an asymmetric SV-MIDAS model. Empirical study is then implemented on both Chinese and U.S. stock markets. Our results show that the SV-MIDAS model is useful to identify the macroeconomic volatility source of stock volatility and improve the in-sample fitting performance. Moreover, the out-of-sample forecast performances of SV-MIDAS model are significantly superior to that of traditional SV model for both Chinese and U.S. stock markets. In particular, among the macroeconomic variables, the Composite Leading Indicator has the best forecast performance. In addition, we find that the asymmetric SV-MIDAS model is applicable for capturing leverage effects in both stock markets and it outperforms the corresponding benchmark model in the in-sample fitting.

Keywords: SV-MIDAS model; Component decomposition; Forecast; Macroeconomic; Leverage effect (search for similar items in EconPapers)
JEL-codes: C58 E37 G17 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.econmod.2020.03.013

Access Statistics for this article

Economic Modelling is currently edited by S. Hall and P. Pauly

More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-10-05
Handle: RePEc:eee:ecmode:v:95:y:2021:i:c:p:462-472