EconPapers    
Economics at your fingertips  
 

Using artificial neural network for reservoir eutrophication prediction

Jan-Tai Kuo, Ming-Han Hsieh, Wu-Seng Lung and Nian She

Ecological Modelling, 2007, vol. 200, issue 1, 171-177

Abstract: Reservoirs provide approximately 70% of water supply for domestic and industrial use in Taiwan. The water quality of reservoirs is now one of the key factors in the operation and water quality management of reservoirs. Transient weather patterns result in highly variable magnitudes of precipitation and thereby sharp fluctuations in the surface elevation of the reservoirs. In addition, excessive watershed development in the past two decades has contributed to continuing increase in nutrient loads to the reservoirs. The difficulty in quantifying watershed nutrient loads and uncentainties in kinetic mechanism in the water column present a technical challenge to the mass balance based modeling of reservoir eutrophication. This study offers an alternative approach to quantifying the cause-and-effect relationship in reservoir eutrophication with a data-driven method, i.e., capturing non-linear relationships among the water quality variables in the reservoir. A commonly used back-propagation neural network was used to relate the key factors that influence a number of water quality indicators such as dissolved oxygen (DO), total phosphorus (TP), chlorophyll-a (Chl-a), and secchi disk depth (SD) in a reservoir in central Taiwan. Study results show that the neural network is able to predict these indicators with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

Keywords: Artificial neural network; Reservoir eutrophication; Te-Chi Reservoir (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006002985
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:200:y:2007:i:1:p:171-177

DOI: 10.1016/j.ecolmodel.2006.06.018

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:171-177