EconPapers    
Economics at your fingertips  
 

Measuring q-bits in three-trophic level systems

Sérgio Henrique Vannucchi Leme de Mattos, José Roberto Castilho Piqueira, João Vasconcelos-Neto and Fernando Moya Orsatti

Ecological Modelling, 2007, vol. 200, issue 1, 183-188

Abstract: The use of quantum information has been proposed as an approach to deal with biological data (Piqueira, J.R.C., Serboncini, F.A., Monteiro, L.H.A., 2006. Biological models: measuring variability with classical and quantum information. J. Theor. Biol. 242 (2), 309–313). Using three-trophic level systems as examples, we show how to model population data by expressing the system states with q-bits. The system time evolution is given by the state transition matrices which relate the states to successive time intervals. It is a complementary way of looking at the problem which is usually modeled with deterministic differential equations. This is possible because the dynamics of interacting populations in three-trophic level systems is a problem with several coupled variables and, consequently, complex dynamical behaviors seem to result. The non deterministic dynamics generated by the state transition matrices is supposed to model the biological system as a whole, with real data expressing even the global effects of small disturbances in the ecological parameters.

Keywords: Herbivores; Information; Population; Predator; q-Bits; Three-trophic system (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006003164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:200:y:2007:i:1:p:183-188

DOI: 10.1016/j.ecolmodel.2006.07.006

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:183-188