EconPapers    
Economics at your fingertips  
 

Environ indicator sensitivity to flux uncertainty in a phosphorus model of Lake Sidney Lanier, USA

Stuart R. Borrett and Olufemi O. Osidele

Ecological Modelling, 2007, vol. 200, issue 3, 371-383

Abstract: Effective environmental impact assessment and management requires improved understanding of the organization and transformation of ecosystems in which independent agents are linked through an intricate network of energy, matter, and informational interactions. While advances have been made, we still lack a complete understanding of the processes that create, constrain, and sustain ecosystems. Network environ analysis (NEA) provides one approach for building novel ecosystem insights, but it is model dependent. As ecological modeling is an imprecise art, often complicated by inadequate empirical data, the utility of NEA may be limited by model uncertainty. Here, we investigate the sensitivity of NEA indicators of ecosystem growth and development to flow and storage uncertainty in a phosphorus model of Lake Sidney Lanier, USA. The indicators are total system throughflow (TST), total system storage (TSS), total boundary input (Boundary), Finn cycling index (FCI), ratio of indirect-to-direct flows (Indirect/Direct), indirect flow index (IFI), network aggradation (AGG), network homogenization (HMG), and network amplification (AMP). Our results make two primary contributions. First, they demonstrate that five of the indicators – FCI, Indirect/Direct, IFI, AGG and HMG – are relatively robust to the flow and storage uncertainty in the Lake Lanier model. This stability lets us draw robust conclusions about the Lake Lanier ecosystem organization (e.g., phosphorus flux in the lake is dominated by internal processes) in spite of uncertainties in the model. Second, we show that the majority of the indicators co-vary and that most of their common variation could be mapped onto two latent factors, which we interpret as (1) system integration and (2) boundary influences.

Keywords: Aquatic ecosystem; Environ analysis; Flow analysis; Indirect effects; Network analysis; Uncertainty (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006003851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:200:y:2007:i:3:p:371-383

DOI: 10.1016/j.ecolmodel.2006.08.011

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:200:y:2007:i:3:p:371-383