EconPapers    
Economics at your fingertips  
 

Plant acclimation to elevated CO2—From simple regularities to biogeographic chaos

Vincent P. Gutschick

Ecological Modelling, 2007, vol. 200, issue 3, 433-451

Abstract: Upon exposure to altered levels of CO2, plants express a variety of acclimations to CO2 directly, over and above acclimations to indirect changes in temperature and water regimes. These acclimations commonly include increased photosynthetic CO2 assimilation and increased water-use efficiency with reduced N content and reduced stomatal conductance. The robust generic acclimations are explicable by combining simple models of carboxylation, stomatal control, energy balance, and functional balance. Species- or genotype-specific acclimations are overlaid on these generic acclimations. Several such specific acclimations that are often seen are readily incorporated in an extended model. These specific acclimations generate a great spread of values in key performance measures of photosynthesis, water- and N-use efficiencies, and rates of water and N use, even among C3 species that are the focus of this work. These performance measures contribute strongly to relative fitness and thus to evolving biogeographic distributions. The spread in fitness values is so large as to impend “chaotic” shifts in biogeography (and, ultimately, evolution) that are not understandable with models specific to species or functional groups; rather, a systematic study of key physiological and developmental parameters is merited. Also merited is a coherent extension of the model used here, or similar models, to include other phenomena, including mycorrhizal associations, transience in resource availability, etc. The composition of useful approximate fitness functions from physiological and allocational responses is a major challenge, with some leads originating from the model. In the search to extract patterns of responses, arguments based on the responses being close to optimal or adaptive will be misleading, in view of the absence of selection pressure to perform adaptively at high CO2 for over 20 million years. I offer suggestions for more useful research designs.

Keywords: CO2; Acclimation; Models; Biogeography (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006003917
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:200:y:2007:i:3:p:433-451

DOI: 10.1016/j.ecolmodel.2006.08.013

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:200:y:2007:i:3:p:433-451