Conditions for coexistence of freshwater mussel species via partitioning of fish host resources
Brenda Rashleigh and
Donald L. DeAngelis
Ecological Modelling, 2007, vol. 201, issue 2, 171-178
Abstract:
Riverine freshwater mussel species can be found in highly diverse communities where many similar species coexist. Mussel species potentially compete for food and space as adults, and for fish host resources during the larval (glochidial) stage. Resource partitioning at the larval stage may promote coexistence. A model of resource utilization was developed for two mussel species and analyzed to determine conditions for coexistence. Mussel species were predicted to coexist when they differed in terms of their success in contacting different fish host species; very similar strategies offered limited possibilities for coexistence. Differences in the mussel species’ maximum infestation loads on the fish hosts that coincided with differences in their fish host contact success promoted coexistence. Mussel species with a given set of trade-offs in fish host use were predicted to coexist only for a subset of relative fish host abundances, so a shift in relative fish host abundances could result in the loss of a mussel species. An understanding of the conditions for freshwater mussel species coexistence can help explain high mussel diversity in rivers and guide ongoing conservation activities.
Keywords: Resource partitioning; Freshwater mussels; Invasibility analysis; Limiting similarity (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006004194
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:201:y:2007:i:2:p:171-178
DOI: 10.1016/j.ecolmodel.2006.09.009
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().