Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna: A combination of the DEBtox and matrix population models
Elise Billoir,
Alexandre R.R. Péry and
Sandrine Charles
Ecological Modelling, 2007, vol. 203, issue 3, 204-214
Abstract:
Bioassays can be used in aquatic toxicology to provide individual determinations, however ecotoxicology is now attempting to assess the impact of pollution on populations. The main issue is how to infer the impact on an entire population of the toxic effects observed in individuals. At the individual level, Dynamic Energy Budget in Toxicology (DEBtox) theory provides a set of mechanistic models of survival, reproduction and growth continuously as a function of time and exposure concentration, in which the parameters used have clear biological meanings. These models have been designed for the analysis of data provided by the internationally standardized toxicity tests, and sometimes make it clear which is the mode of action of the contaminant. Matrix population models directly yield the population growth rate, the most robust endpoint in risk assessment at the population level. By combining DEBtox theory and matrix population models, we extrapolate every effects of the toxic compound on the individual (reduced fecundity, growth and survival) to the population level. Both lethal and sublethal effects are integrated into a single parameter, the population growth rate, which is calculated continuously against exposure concentration. We can thus compare the consequences at the population level of choosing one or another assumption about the mode of action of the contaminant at the individual level. We used various complementary matrix population models, in order to perform a complete sensitivity analysis, highlighting critical demographic parameters in the evolution of population growth rate as a function of contaminant concentration. Here, we apply this method to a test organism commonly used in ecotoxicology, Daphnia magna, through a case study of cadmium contamination.
Keywords: Ecotoxicology; Leslie matrix population models; DEBtox; Daphnia magna; Sensitivity analysis (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006005758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:203:y:2007:i:3:p:204-214
DOI: 10.1016/j.ecolmodel.2006.11.021
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().