Turnover of plant trait hierarchies in simulated community assembly in response to fertility and disturbance
Veiko Lehsten and
Michael Kleyer
Ecological Modelling, 2007, vol. 203, issue 3, 270-278
Abstract:
Plant ecologists have placed increasing emphasis on a functional understanding of vegetation. One way to gain insight into the assemblage of vegetation communities is to investigate plant trait responses to environmental gradients or experimental treatments. We present simulations of responses of suites of traits to treatments differing in soil resources and disturbance intensity, in order to construct a functional response hierarchy of traits. We focus on the traits specific leaf area (SLA), plant height, seed mass and life cycle. Though only four traits are varied, these traits are connected to other traits either through trade-offs (e.g. SLA with leaf life span and relative growth rate, seed mass with seed number) or allometric rules (e.g. above-ground biomass scales positively with below-ground biomass). Thus a wide range of plant life history is represented in the simulations. We simulated the assemblage of plant types composed of these traits at two fertility levels and four disturbance treatments, i.e. every 7 years, annually, or monthly mown, and annually ploughed. We present the results of a simulation using LEGOMODEL, an individual-based, spatially explicit, ecological field model and develop a novel method to construct a functional response hierarchy of traits.
Keywords: Functional response hierarchy; Plant functional types (PFT); Functional traits; Succession; Simulation models; Canopy height; SLA; Seed mass; Life cycle (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006006028
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:203:y:2007:i:3:p:270-278
DOI: 10.1016/j.ecolmodel.2006.11.034
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().