Predicting ecosystem functioning from plant traits: Results from a multi-scale ecophysiological modeling approach
M.T. van Wijk
Ecological Modelling, 2007, vol. 203, issue 3, 453-463
Abstract:
Ecosystem functioning is the result of processes working at a hierarchy of scales. The representation of these processes in a model that is mathematically tractable and ecologically meaningful is a big challenge. In this paper I describe an individual based model (PLACO—PLAnt COmpetition) that represents the effects that individual plant traits and environmental resources have on the growth of individual plants and, by implementing key interactions of and feedbacks on resource competition and nutrient cycling, also simulates the behaviour of the plant community and the ecosystem as a whole. The model is tested on results obtained in long term fertilization experiments, after which the model is applied to gain insight in questions related to plant diversity and ecosystem functioning. Is there a clear relationship between the diversity of the plant characteristics introduced in the model and overall system level productivity? The model simulations captured the patterns observed in the long term fertilization experiments and correctly predicted the dominance of Betula nana under the fertilization treatment. In the biodiversity simulations at both low and high nutrient inputs, an optimum curve relationship occurred between diversity and system level growth, and between diversity and system level biomass. At low nutrient input, system level productivity showed a curved relationship with an intermediate optimum with Shannon's diversity index, but at high nutrient input single species dominated systems also reached high values of productivity. The model simulations show that individual plant behaviour observed when a plant is growing on its own contains limited information about its behaviour and productivity within a competitive multi-species environment.
Keywords: Plant traits; Competition; Ecosystems; Biodiversity; Plant growth; Model (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380006006326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:203:y:2007:i:3:p:453-463
DOI: 10.1016/j.ecolmodel.2006.12.007
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().